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SECTION 1

INTRODUCTION

1.1 BACKGROUND

The US Air Force has been and continues to be concerned
with aircraft transparency life-cycle costs and overall
durability. As part of this concern, the Air Force has funded
programs to study transparency materials, evaluate transparency
durability, and develop durability test methods. Acrylic
plastics are frequently used for aircraft transparencies.
Acrylic is subject to a phenomenon known as crazing. Crazes
appear to be small cracks in the surface of the material,
although they are not. Crazing is a form of yielding in polymers
characterized by a spongy void filled fibrillar structure. The
density of the material in the craze changes, causing a change in
the index of refraction, which causes light to be reflected off
of the crazes. Crazing occurs when tensile stresses are present,
and is accelerated under the presence of certain chemicals and
when temperature is increased. Crazing generally occurs
perpendicular to the direction of the largest principle tensile
stress. The significance of crazing of acrylic is that it
degrades transparency optics and often is the cause for
transparency removal and replacement.

The current method of evaluating transparency durability,
specifically concerned with chemical craze resistance, is the
uniaxial cantilever beam craze test (reference ASTM F 484). This
test method lwcs been used almost exclusively in the transparency
industry. The advantages of the cantilever beam craze test are
that it is simple, it requires minimal equipment, and it is
relatively inexpensive. The disadvantage of the cantilever beam
craze test is that it does not simulate real world stress
conditions. Aircraft transparencies are typically under a
biaxial state of stress. A chemical craze test has been
developed to evaluate the effect of biaxial stresses on crazing,
using a circular plate with clamped edges and a uniform pressure
load. While this biaxial craze specimen is more simple to
fabricate, test, and analyze than those used by other researchers
to study biaxial crazing, the test is more complicated and more
time consuming than the uniaxial craze test and requires special
fixturing.

1.2 OBJECTIVE

The objective of this test program is to investigate the
relationship between uniaxial and biaxial chemical stress crazing
of cast acrylic, and to develop a better understanding of the
crazing phenomenon. The development of a relationship between
uniaxial and biaxial crazing would validate the use of the
inexpensive uniaxial chemical craze testing to evaluate the
effects of various chemicals on aircraft transparencies.



SECTION 2

TECHNICAL APPROACH

2.1 SCOPE

This program consisted of craze initiation theory
development and craze testing. A series of uniaxial and biaxial
craze tests was conducted at various stress levels in conjunction
with isopropyl alcohol. Isopropyl alcohol was the chosen
chemical craze agent because it is a representative chemical
which is often used for cleaning of aircraft transparencies. The
results of this testing were analyzed to develop craze initiation
criteria which apply to uniaxial and biaxial crazing.

2.2 THEORETICAL DEVELOPMENT OF CRAZE INITIATION

Craze initiation criterion are analogous to stress
yielding criterion. Stress yielding criterion describe the
necessary conditions (state of stress/strain) for yielding to
occur. Stress yielding criterion which may apply to chemical
stress crazing include:

maximum principal stress,
maximum principal strain,
maximum shear stress (Tresca),
distortional energy (von Mises),
strain energy, and
combinations of these, deviatoric stresses, and/or flow
stresses.

These yielding criterion were considered as a starting point for
the development of chemical stress crazing criterion.

While there is extensive information in the literature
concerning stress yielding criterion (although most of it has not
been applied specifically to polymers), there is limited
information available in the literature concerning chemical
stress crazing of polymers. The majority of the research which
has been conducted has been concerned only with stress crazing,
not chemical stress crazing. Two basic craze initiation criteria
have been proposed. Sternstein and Ongchin (Reference 2)
proposed a critical stress bias criterion for surface stress
crazing of polymethylmethacrylate (PMMA, acrylic) as follows:

a,-022 A/(a+0 2 ) + B (1)

where a, and a2 are the principle biaxial stresses, and A and B
are functions of time and temperature. The difference between a,
and a2 represents a stress bias or flow stress (this is equal to
twice the maximum shear stress), and the quantity of

2



al + a2 represents twice the first stress invariant or the mean
stress. This criterion, along with the von Mises criterion for
yielding (which has been shown by the same authors to be fairly
representative of yielding behavior for acrylic) is plotted in
biaxial stress space in Figure 2.1. Sternstein and Ongchin based
their conclusions on cylindrical specimens under tension with
internal pressure, and on combined tension/torsion tests, all at
elevated temperatures (500, 60, and 700 C).

A second similar criterion, based on critical strain, has
been developed by Oxborough and Bowden (Reference 3) for
polystyrene, as follows:

a1- Aa2= A/(aI+ a2 ) + B (2)

The only difference between this and the previous criterion is
that the left side of the equation represents the maximum strain
in this case, where p is Poisson's ratio. Oxborough and Bowden
based their conclusions on combined tensile and compressive
tests, at room temperature, conducted on rectangular annealed
polystyrene specimens with a hole in the center. This criterion
plotted in stress space is similar to Figure 2.1.

3
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SECTION 3

CRAZE TESTING

3.1 UNIAXIAL CHEMICAL CRAZE TESTING

3.1.1 specimen Configuration

The craze beam specimens were 1 inch x 7 inch x
1/8 inch thickness. Polycast Mil-P-8184 Type II (low moisture
uptake) cast acrylic from the same lot was used for all testing.

3.1.2 Test Method

The craze beam testing was conducted using ASTM
F484-83 as a guideline. The craze tests were conducted at 75 +

100 F. The cantilever craze beams were loaded to produce a
maximum stress at the fulcrum of 2000, 3000, and 4000 psi. The
underside of the beams were marked at 0.25 inch intervals. After
the load was applied, the beams were allowed to stabilize for ten
minutes before the test chemical was applied to the beam surface.
The edges of the beams were protected with a butyl rubber sealant
to prevent the chemical from coming in contact with the machined
or cut edges and causing premature crazing. Isopropyl alcohol
(99% pure) was applied to the top surface of the beams as
required to maintain a wetted condition. Time to craze
initiation and location (corresponding to a discrete stress
level) were recorded during the tests. The uniaxial chemical
craze test setup is shown in Figure 3.1.

3.1.3 Test Data/Analysis

The results of the uniaxial craze tests are
summarized in Figure 3.2. The uniaxial craze results plotted in
Figure 3.2 indicate that there is a linear relationship between
the log of time to initiation of craze and applied stress.

3.2 BIAXIAL CHEMICAL CRAZE TESTING

3.2.1 Specimen Configuration

The biaxial craze specimens were 8.5-inch
diameter, 3/16-inch thick plate specimens. Polycast Mil-P-8184
Type II (low moisture uptake) cast acrylic from the same lot was
again used for all testing.

3.2.2 Test Method

The craze tests were conducted using the general
guidelines of ASTM F1164-88. The test fixturing included a
pressure cell, a precision pressure regulator, and a pressure
test gauge with accuracy of 0.075 psi. The test setup is shown

5



Figure 3.1. Uniaxial Chemical Craze Test Setup.
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in Figure 3.3. The pressure in the test cell was used to induce
equal principal biaxial stresses of 2000, 3000, and 4000 psi at
the center of the plates. Concentric rings were drawn on the
underside of the plate to facilitate location of the crazes. The
components of the principal stresses (the radial and tangential
stresses) were determined from:

a 212 [-(l+p) + (3+A) R2] (3)

t2 [-(l+M) + (1+3A) Ri] (4)

where:

ar= radial stress (psi) at= tangential stress (psi)

R = plate radius (inches) t = plate thickness (inches)

= Poisson's ratio p = pressure (psi)

r = radial dimension from center to point of interest (inches)

Figure 3.4 is a plot of the radial and tangential components of
the stress in the biaxial plate specimen. After the pressure
load was applied to the plate, the plates were allowed to
stabilize for ten minutes before the test chemical was applied.
Isopropyl alcohol (99% pure) was applied to the top surface of
the plates as required to maintain a wetted condition. Time to
craze initiation and location (corresponding to a discrete stress
condition) were recorded during the tests.

3.2.3 Test Data/Analysis

The biaxial and uniaxial test data is presented
in Figures 3.5-3.19. A typical tested biaxial specimen is shown
in Figure 3.20. A biaxial craze specimen which was tested until
failure is shown in Figure 3.21. It is believed that the spread
in the data is due, in part, to the fact that each plot does not
represent a discreet instant in time, but represents a time
interval.

8
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Figure 3.20. Typical Tested Biaxial Craze Specimen.

26



Figure 3.21. Biaxial Craze Specimen Tested to Failure.
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SECTION 4

EVALUATION OF CRAZE INITIATION CRITERION

All of the types of yield initiation criterion listed in
Section 2 were evaluated. None of these criterion fit the data
in the forms that they have been used to describe yielding. The
elliptical shape of the von Mises and strain energy criterion
showed promise, but did not fit the uniaxial and biaxial data
generated by test.

Equations 1 and 2, which are semi-empirical, were also
evaluated. Because of the limitations of biaxial stress
combinations which can be obtained from the biaxial plate
specimens (the biaxial plate is only effective for measuring
tensile-tensile stress loads of limited combinations; see Figure
3.4), it is difficult to determine if the shape of the craze
initiation surface in stress space is Lusp shaped as shown in
Figure 2.1, or if it is some other shape.

The parameters A and B from equations 1 and 2 were
determined as follows:

For the uniaxial stress state, Equation 1 (stress bias
criterion) reduces to

a = A/la + B (5)

A least square fit of the data in Figure 3.2 provides a
relationship between time to craze and uniaxial stress

log t = 3.5057 - 7.7113xi0-4a (6)

or, rearranging to solve for stress in terms of time,

a = (3.5057 - log t)/(7.7113 x 10- 4) (7)

Substituting Equation 5 into Equation 3, and solving for B,

B = (3.057 - log t)/(7.7113 x 0-4)S A(3.5057 - log t)/(7.7113 x 10 )  ()

Equation 8 is then substituted into Equation 1, leaving A, a,
and 02 as the only unknowns.

28



a, - a2_2: A/(a,+ a2 ) + (3.5057 - log t)/(7.7113 x 10-4 )

- A/(3.5057 - log t)/(7.7113 x 10 - 4 ) (9)

Equation 9 is then rearranged to solve for A, and the biaxial
test data is then input into the equation to determine A for each
test data set a,, a2 , and time t. The corresponding value for B
is determined from Equation 8. The values of A and B are then
plotted versus time, see Figures 4.1 and 4.2, and a least square
fit provides a relationship between the value A and time, and the
value B and time. Note that the coefficients of determination,
R, for A and B are shown on Figures 4.1 and 4.2. The coefficient
of determination, R, is a measure of the standard error
associated with the least square fit to the data. Possible
values range from 0 to 1. The closer the R value is to 1, the
smaller the standard error is for the straight line fit to the
data. Equation 1 (stress bias criterion) plotted in the first
quadrant of stress space (tension-tension) with the functions for
A and B shown in Figures 4.1 and 4.2, is shown in Figure 4.3.

The parameters A and B for Equation 2 (maximum strain
criterion) are solved for in a similar manner and, along with
corresponding R values, are shown in Figures 4.4 and 4.5.
Equation 2 (maximum strain criterion), plotted in the first
quadrant of stress space with the functions for A and B shown in
Figures 4.4 and 4.5, is shown in Figure 4.6.

Most accepted yield criterion are elliptical in shape
(e.g., von Mises and strain energy). In fact, the plots of
biaxial and uniaxial results for the later time periods (after 15
minutes) appear to be elliptical shaped. The general formula for
an ellipse oriented at 450 to the x and y axis is

(a 2 + a22)/A2 + (a1 2_ 2 a + a22)/B2 = 2 (10)

where the parameters A and B are functions of time. A and B are
solved for in a manner similar to that shown above. The
parameters A and B are plotted versus time in Figures 4.7 and
4.8. A family of empirical elliptical shaped craze initiation
criteria curves, plotted using Equation 10 and the equations for
A and B shown in Figures 4.7 and 4.8, are shown in Figure 4.9. A
plot of this craze initiation criteria in biaxial stress and time
space is shown in Figure 4.10. This surface represents the
threshold between uncrazed and crazed material. Inside the
surface there is not sufficient energy to cause crazing. The
craze surface (and condition) can be reached by increasing the
available energy; the available energy is increased by moving up
the time scale, increasing the stresses, and/or increasing the
temperature.
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Figure 4.10. Elliptical Craze Initiation Criteria
in Biaxial Stress and Time Space.

39



Table 4.1 presents the equations for each of the three
proposed criterion, the values of the parameters for each
equation, and the corresponding coefficient of determination, R,
for each parameter. The elliptical stress craze initiation
criterion provides the best fit to the data obtained, with R
values for the two parameters of 0.8 and 0.9.
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SECTION 5

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS

The results of this program indicate that there is a
definite relationship between uniaxial and biaxial chemical
stress crazing with isopropyl alcohol. The exact relationship
was not determined in this effort. Three possible chemical
stress crazing criterion have been presented. Two represent
adaptations of criterion which have been developed for pure
stress crazing (where the craze agent is air), and the third
criterion represents an empirical elliptical criterion. The
elliptical craze initiation criterion provided the best fit to
the data obtained.

The choice of a circular plate specimen prevented
studying craze in all regions of the biaxial stress state. Even
though the biaxial craze specimen design used in this effort is
more simple to fabricate, test, and analyze than those used by
other researchers to study biaxial crazing, it is not possible to
study all of the combinations of principle biaxial stresses of
interest with this specimen. Therefore, a different type of
specimen is required for future analysis of biaxial craze. To
better define a multiaxial chemical stress crazing criterion,
other tests should be conducted, with different combinations of
principle tensile stresses, and with combinations of tensile and
compressive stresses.

It is recommended that future work also include analysis
of the effects of other chemicals (in addition to isopropyl
alcohol) on crazing. In additign to conducting more tests with
different combinations of biaxial stresses and with different
chemicals, it is recommended that future work also take into
account area effects. The testing on this program was conducted
with time to initiation as the measured parameter. If future
testing were to be conducted with the measured parameter being
time to a specified craze density (i.e. number of crazes per
surface area) instead of time to initiation of first craze, it
would allow a etter comparison of different types of tests.
Time to initiation of first craze is a function of the surface
area at a given stress level. Crazing occurs sooner on larger
areas than smaller ones. The cantilever beam has a given surface
area of material at each stress level, while the area at each
stress level for the biaxial plate specimen is a function of the
radial location in the plate ana is not equal to the area for the
cantilever beam specimen. In general, area effects have been
ignored by researchers.
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